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Abstract. This work aims at investigating the effectiveness and suitability of 

Interactive Process Discovery, an innovative Process Mining technique, to 

model healthcare processes in a data-driven manner. Interactive Process Dis-

covery allows the analyst to interactively discover the process model, exploiting 

his domain knowledge along with the event log.  In so doing, a comparative 

evaluation against the traditional automated discovery techniques is carried out 

to assess the potential benefits that domain knowledge brings in improving both 

the accuracy and the understandability of the process model. The comparison is 

performed by using a real dataset from an Italian Hospital, in collaboration with 

the medical staff. Preliminary results show that Interactive Process Discovery 

allows to obtain an accurate and fully compliant with clinical guidelines process 

model with respect to the automated discovery techniques. Discovering an ac-

curate and understandable process model is an important starting point for sub-

sequent process analysis and improvement steps, especially in complex envi-

ronments, such as healthcare. 

Keywords: Interactive Process Discovery, Business Process Modeling, 

Healthcare, Process Mining. 

1 Introduction and Background 

Thanks to the pervasive adoption of Information Systems within healthcare organiza-

tions and the raising amount of patient and process-data, recent research has started 

focusing on data-driven approaches for investigating patient-flows through automatic 

or semi-automatic ways. Particularly, Process Mining (PM) has emerged as a suitable 

approach to analyze, discover, improve and manage real processes, by extracting 

knowledge from event logs [1]. Among the different PM perspectives, Process Dis-

covery (PD) focuses on automatically discovering process models based on the event 

log, without using any apriori knowledge [1,2].  Of course, to gain significant out-

comes, the event log should contain all the necessary information. A considerable 

number of PD techniques has been proposed by researchers for automatically discov-
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ering process models [1]. The most promising techniques for healthcare processes are 

Heuristic Miner [3], Fuzzy Miner [4], Split Miner [5], and Inductive Miner [6], as 

they can handle noisy and incomplete event log [7,8]. Most of them produce formal 

models (Petri nets, transition systems, process trees, etc.), having clear semantics. In 

addition, there are available also several commercial tools (Disco, Celonis, QPR, 

ProcessGold, etc.) to support PD. They return process models that either have no 

formal semantics or correspond to so-called Directly-Follows Graphs (DFGs) that 

cannot express concurrency. These models provide valuable insights but cannot be 

used to capture the casual relationships of the activities in the process and draw relia-

ble considerations [9]. 

PD is particularly critical for healthcare processes due to their intrinsic complexity, 

high variability and continuous evolution over time. [2,10]. Specifically, case hetero-

geneity typically leads to extract extremely complex, and often incomprehensible, 

process models, i.e. the so-called “spaghetti-like models” [1,11]. Besides, healthcare 

processes are highly dependent on clinicians’ experience and expertise, i.e., they are 

knowledge-intensive [12], involving semi-structured and unstructured decision mak-

ing. Such deep knowledge is not recorded in the event log, and, thus, it results diffi-

cult to elicit [13]. As a result, the mined models do not provide a meaningful repre-

sentation of the reality, leading to a significant interpretation challenge for healthcare 

manager. To improve model quality, domain experts and analysts heuristically per-

form a refinement at the end of the discovery phase. Such a refinement is based on 

their knowledge, and it has turned out to be a time-consuming as well as iterative task 

[14].  

Recently, new interactive PD approaches have been emerging, that allow to incor-

porate domain knowledge into the discovery of process models [13,15,16]. Combin-

ing domain knowledge and process-data may improve process modeling and lead to 

better results [17,18]. Interactive approaches are particularly useful in healthcare con-

text, where physicians typically have a deep domain knowledge, whose integration 

within the process discovery phase can provide critical advances with respect to tradi-

tional automated discovery techniques [13,14].  

This work aims at demonstrating the effectiveness and suitability of Interactive 

Process Discovery (IPD), an innovative interactive technique developed by Dixit et 

al. [19], to model healthcare processes. IPD allows the user (i.e., the analyst or the 

expert) to interactively discover the process model, exploiting the domain knowledge 

along with the event log (Figure 1). In so doing, a comparative evaluation against the 

existing state-of-the-art process discovery techniques is carried out, to assess the po-

tential benefits that domain knowledge brings in improving the accuracy and under-

standability of process models. The comparison is performed by using a real dataset 

from an Italian Hospital, in collaboration with medical staff.  

The results confirm that IPD provides a more accurate, understandable, and guide-

line compliant process model with respect to the existing process discovery tech-

niques. In addition, the comparison shows that the automated discovery techniques 

can be improved (e.g., duplicate tasks). Appropriate modeling of patient-flows may 

support healthcare managers in taking decisions related to capacity planning, resource 

allocation, and for making necessary changes in the process of care.  
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Fig. 1. Traditional automated Process Discovery (top) and Interactive Process Discovery (bot-

tom) (process models are not intended to be readable). 

2 Interactive Process Discovery 

Interactive Process Discovery (IPD), developed by Dixit et al. [19], is an innovative 

interactive technique for modeling knowledge-intensive processes based on the do-

main knowledge along with the event log. In IPD, the user (i.e., the analyst/expert) 

has total control over the discovery approach, and can model the process incremental-

ly, at the desired complexity level, exploiting his deep knowledge. Information ex-

tracted from the event log is used to guide the user in making decisions about where 

to place a specific activity within the model. The discovered model is always sound 

and can have duplicate activities, silent activities etc. To enable the interactive dis-

covery of a process model, the IPD miner uses the synthesis rules [19,20], which al-

low expanding a minimal synthesized net1 by adding one transition and/or one place 

at a time. A brief description of IPD approach is reported here following (for more 

details see [19]). During the modeling phase, the user interacts with the synthesized 

net by applying arbitrarily three synthesis rules: (a) the abstraction rule, (b) the place 

rule and (c) the transition rule [20]. All possible applications of these rules are pro-

jected on the synthesized net, based both on the user interaction and on the infor-

mation from the activity log2.  

More in detail, the user selects the activity to be added into the net from the activi-

ty log. Depending on the selected one, the status of the current synthesized net is up-

dated. Specifically, IPD indicates to the user if the selected activity occurs before or 

after the other activities within the synthesized net. Alternatively, it highlights that the 

selected activity and the others in the network never take place at the same time.  In 

so doing, IPD suggests where to place the activity, depending on the insights gained 

                                                           
1  A synthesized net is a free-choice workflow net containing a source place, a sink place, a 

start transition, and an end transition. For more details see [19,20]. 
2  An activity log is a multi-set (or bag) of sequences of activities. Every sequence of activities 

in the activity log is called an activity trace [19]. 
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from the activity log. The user can decide to take assistance from the data or ignore 

the suggestion. The projected information can be based either on the eventually fol-

lows (precedes) relation or on the directly follows (precedes) relation, as desired by 

the user. The user labels the newly-added transitions in the synthesized net with an 

activity from the activity log. If the transition does not represent an activity, it is de-

picted as a silent transition. The activity label of the new transition is pre-selected by 

the user, after which the rule is applied. 

3 Case Study: Objective and Methodology 

In this work, IPD was applied to a real case of an Italian Hospital to show both the 

effectiveness of the approach and its suitability in a complex and knowledge-intensive 

environment. More in detail, we carried out a comparative evaluation against auto-

mated discovery techniques, to assess the potential benefit that domain knowledge 

brings in improving process models. The evaluation was performed in terms of accu-

racy (i.e., if process model and data agree) and compliance with clinical guidelines.  

The approach followed for the evaluation goes through three main steps: (a) data 

collection and preparation, (b) model building, and (c) model comparison (as depicted 

in Figure 2). 

Fig. 2. Comparative evaluation approach. 

3.1 Data Collection and Preparation 

We collected and pre-processed data of all lung cancer patients treated by the hospital 

during the years 2014 and 2015. Specifically, the collected data concerned pre-

operative, surgical, and post-operative procedures delivered to lung cancer patients. 

The management of lung cancer is complex and requires the integration of decisions 

made by practitioners from different disciplines. Decisions are mainly based on the 

practitioner's deep knowledge and expertise. 

Data were mostly gathered from the Hospital Information Systems. The initial da-

tabase consisted of 995 cases, 820 types of activities and more than 90,000 events. 

Before modeling, we decided to refine the raw event log, in order to guarantee its 

quality. As a matter of fact, it is directly related to the quality and the applicability of 

results. Data cleaning and preparation included: (a) outliers’ removal, (b) low level 
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activities aggregation, (c) less significant activities filtering. More in detail. we firstly 

removed incomplete cases with missing attribute values (4 cases). Hence, we simpli-

fied the event log by removing the excess of low-level activities. Specifically, we 

aggregated lab test activities (e.g., glucose, potassium, creatinine, etc.), which were 

recorded with an excessively high level of detail, into a single macro-activity, named 

“lab test”. The event log also contained no significant and less frequent activities, 

which were not directly related to the treatment of lung cancer patients (e.g., eye lens 

operations, bones excision, etc.), according to medical staff. For example, during the 

treatment of lung cancer, a patient can undergo another surgery or procedure (e.g., 

operations on skin) due to the coexistence/onset of a comorbidity. Thus, we decided 

to filter such type of activities and keep only the 21 most frequent tasks. In so doing, 

we aimed at building models with a comparable yet meaningful number of activities. 

In the end, the refined event log consisted of 991 patient cases, 21 activities, and 

more than 13,000 events. 

3.2 Model Building 

Firstly, we applied IPD, as implemented in ProM 6.8, to extract the process model for 

lung cancer patients, with the collaboration of medical staff. IPD can be accessed via 

the InteractiveProcessMining package in ProM 6.8 and the plug-in 'Petri net editor 

with log heuristics information'. To obtain the resulting model, on several occasions, 

we took assistance from insights of the event log gained via IPD (e.g., for positioning 

“radiotherapy” and “nuclear medicine” within the model). On some other occasions, 

we chose to ignore the information from the data, deeming it inadequate (e.g., for 

placing the “x-ray” within the model).  

Following, among the state-of-the-art automated discovery techniques, we chose 

and applied the Inductive Miner (IM) [6], as implemented in ProM 6.8, and the Split 

Miner (SM) [5], as implemented in Apromore. As the 30 commercials tools produce 

Directly-Follows Graphs (DFGs) [9], we also applied the Directly-Follows Graphs 

Miner, as implemented in PM4Py [21]. As each discovery technique came with sev-

eral parameters to be tuned, we optimized it by testing different parameter values, to 

find the best results. The optimization was based on the F-score metric [22] to find the 

solution with the optimal balance between fitness and precision. The F-score was 

computed on Petri nets since the measuring tools work only on Petri nets. Conver-

sions of the process model in Petri nets were done using ProM’s package.  

3.3 Model Comparison 

We assessed and compared the model produced by IPD and the best configurations of 

the automated discovery techniques in terms of accuracy and compliance with clinical 

guidelines. 

To evaluate the accuracy of the process model, we experimented with two well-

known metrics: fitness and precision [1], which both range between 0 and 1. The 

higher the fitness value, the more the model can replay the log. The higher the preci-

sion value, the fewer behaviors (i.e., traces) are probable not to appear in the event log 

[1,9]. To compute fitness and precision, we resorted to the state-of-the-art alignment-



6 

based approaches described in [23,24]. Due to the trade-off between fitness and preci-

sion [22], we used the F-score as an evaluation metric, to take into account the ability 

of the model to equally fulfill and balance fitness and precision goals [21]. 

To assess the compliance of the model with the AIOM (Italian Association of 

Medical Oncology) guideline [25], we carried out a qualitative analysis with the col-

laboration of medical staff. Specifically, each process model was investigated from a 

“semantic point of view” and was evaluated on the capability to respect a set of medi-

cal rules. Specifically, the evaluation was based on the number of rules that were met 

by each process model. These medical rules were defined starting from the AIOM 

clinical guidelines and formalized by using a subset of (Declare) templates. Table 1 

shows an overview and an interpretation of the templates that we considered. Each 

template provides a way to specify a dependency between two different classes of 

activities (e.g., a precedence constraint between the activities involved in the classes 

“surgery” and “medical examination”) [26]. 

Table 1. Templates interpretation. 

Type Template interpretation based on the domain 

Chain response (A,B) R1: X-ray (B) should occur immediately after the Surgery (A) 

Precedence (A,B) 

& 

Not Succession (B,A) 

R2: Invasive diagnostic examination (B) should be preceded by radio-

logical examinations (A) & (B) should not be followed by (A)  

R3: Surgery (B) should be preceded by invasive diagnostic examina-

tions (A) & (B) should not be followed by (A)  

R4: Surgery (B) should be preceded by medical examinations (A) & (B) 

should not be followed by (A)  

Precedence (A,B) 
 

R5: If the removal of therapeutic aid (B) occurs, it should be preceded 

by the x-ray (A) 

Init(A) R6: The process should start with a general physical examination (A) 

Existence (2,A) R7: Lab test (A) should occur at least 2 times inside the process 

 

4 Results 

Table 2 reports the results related to the quantitative evaluation, i.e. the accuracy 

values obtained by IPD process model and by the best configurations for the automat-

ed discovery techniques. More in detail, the table summarizes, for each discovered 

model: (a) fitness, precision and F-score values; (b) the best configuration parameters 

provided as input (only for the automated discovery techniques). 

Table 2. Quantitative evaluation of IPD process model and the best configurations for three 

representative automated discovery techniques. 

PM technique Best configuration 

parameters 

Accuracy 

Fitness Precision F-score 

Interactive Process Discovery  - 0.70 0.64 0.67 
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Automated 

Discovery 

Techniques 

Inductive Miner 1.0 0.59 0.71 0.64 

Split Miner 0.9 & 0.0 0.81 0.61 0.69 

 DFG Miner 0.2 1 0.21 0.36 

 

As shown in table 2, IPD, IM, and SM miners provide similar results in terms of F-

score, unlike the DFG miner that is unable to balance fitness and precision values. 

Note that we used the DFG model as a proxy for the models generated by commercial 

tools like Celonis, Disco, etc. As regards fitness and precision, all the techniques 

achieve different performance. Specifically, the DFG Miner strikes the best fitness 

with a value of 1, followed by the SM. However, the DFG Miner is less precise than 

the others, allowing behaviors not recorded in the event log. On the other hand, IM 

obtains a model that is slightly less able to reproduce the different behaviors in the log 

but more precise (with a value of 0.71). With IPD, experts could obtain a model with 

a quite high value of fitness, without penalization in precision. This is, definitely, a 

promising result in a knowledge-intensive domain such as the medical one. 

Table 3 reports the scores obtained by the discovered process models in terms of 

satisfied rules.  

Table 3. Number of rules satisfied by the models generated by the IPD, IM, SM, and DFG 

miners. 

Rules Interactive Process 

Discovery 

Inductive 

Miner 

Split Miner DFG Miner 

R1 1 0 1 0 

R2 1 0 0 0 

R3 1 0 0 0 

R4 1 0 0 0 

R5 1 1 1 0 

R6 1 0 0 0 

R7 1 0 1 1 

Total value 7/7 1/7 3/7 1/7 

 

Despite similar performance in terms of model accuracy, less than half of the rules 

were respected by the models generated by the IM, SM, and DFG miners, unlike IPD 

model. This is due to the fact that IM, SM, and DFG miners do not take the organiza-

tional information and the domain knowledge on the treatment process into account; 

as a result, their models fail to properly keep the structure of the process in line with 

clinical guidelines.  

To better clarify this statement, let us drill down the behavior of each model with 

respect to rules R2 and R6. Figures 3,4,5 & 6 show the process models produced by 

IM, DFG miner, IPD, and SM respectively. In a healthcare context, some activities 

must follow a specific order of execution (see R1-R5 in table 3). For example, clinical 

guidelines suggest that invasive diagnostic procedures (e.g., bronchoscopy) must be 

executed immediately after radiological exams (x-ray and CT scan) and not vice-versa 
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(R2), to confirm the diagnosis and evaluate the extent of the disease. Yet, IM, SM, 

and DFG miner models seem not to be able to capture this relationship, allowing also 

the inverse behavior for some process instances. Indeed, they use parallelism or ex-

clusive choice with loops to represent the activities within the model. In such cases, 

the activities can take place in a different order from case to case, not respecting the 

restrictive condition (Figures 3, 4 & 6). On the other hand, in the process model pro-

duced by IPD, invasive diagnostic procedures are directly preceded by radiological 

exams (Figure 5). Furthermore, the lung cancer process should start with a general 

physical examination executed by the specialist (R6). Unlike IPD, the IM, SM, and 

DFG miner seem to violate this rule. Specifically, in both models produced by IM and 

DFG miner, the process may start with an activity other than the general physical 

examination (Figures 3 & 4). Similarly, in the SM model, the starting activity is the 

lab test, rather than the general physical examination (Figure 6). On the contrary, the 

correct order is properly captured in the IPD model (Figure 5).  

These preliminary results confirm that leveraging domain knowledge and infor-

mation recorded in the event log helps obtaining a process model that fully complies 

with the guidelines and is comparable in accuracy to the models produced by the au-

tomated techniques.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Petri net for lung cancer patients generated by the Inductive Miner. 
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Fig. 4. Petri net for lung cancer patients converted from the DFG Miner (Note that the DFG 

Miner can be seen as a representative example of the discovery technique used by commercial 

systems). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 5. Petri net for lung cancer patients generated by Interactive Process Discovery. 
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Fig. 6. Petri net for lung cancer patients converted from the Split Miner. 

5 Discussion and Conclusions 

In this study, we demonstrated the effectiveness and suitability of IPD [19] to model 

healthcare processes. IPD provides the analyst with a flexible way to interact with 

model construction, directly exploiting the domain knowledge along with the event 

log. Prior knowledge from domain experts represents a valuable resource in the dis-

covery of process models, providing critical advances with respects to automated 

discovery techniques [13,19]. This is especially true in healthcare, where physicians 

typically have deep domain knowledge, not recorded in the event log, and, thus, diffi-

cult to elicit [14]. The automated discovery algorithms fail to cope with insufficient 

information in the event log [19] and, thus, produce process models which are incom-

prehensible and/or inaccurate, leading to a significant interpretation challenge for 

healthcare managers. On the other hand, IPD is able to deal with data quality prob-

lems, taking into account domain knowledge.  

Our evaluation demonstrates that IPD can be used to obtain a guideline compliant 

process model, without penalizing its accuracy. More in detail, IPD achieves satisfac-

tory results in terms of model accuracy, comparable to those of IM and SM. It also 

outperforms the DFG Miner. In addition, since IM, SM, and DFG Miner do not take 

the domain knowledge on the treatment process into account, their models fail to 

properly keep the structure of the process in line with clinical guidelines. On the con-
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trary, IPD provides the ability to discover patient pathways that cover the most fre-

quent medical behaviors which are regularly encountered in clinical practice, accord-

ing to medical staff.  

From a managerial viewpoint, discovering an accurate and understandable process 

model is an important starting point for subsequent process analysis and improvement 

steps, especially in complex environments, such as healthcare. Specifically, appropri-

ate modeling of patient-flows may help healthcare managers to identify process-

related issues (e.g., bottlenecks, process deviations, etc.) and main decisions.  

While the initial experimental evaluation has provided satisfactorily results, in the 

future we aim at conducting a more extensive evaluation, replicating the study in 

different healthcare contexts to test the applicability and generalizability of IPD.  
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